Linear Multistep Methods for Integrating Reversible Differential Equations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear multistep methods for integrating reversible differential equations

This paper studies multistep methods for the integration of reversible dynamical systems, with particular emphasis on the planar Kepler problem. It has previously been shown by Cano & Sanz-Serna that reversible linear multisteps for first-order differential equations are generally unstable. Here, we report on a subset of these methods – the zero-growth methods – that evade these instabilities. ...

متن کامل

Linear Multistep Methods for Impulsive Differential Equations

This paper deals with the convergence and stability of linear multistep methods for impulsive differential equations. Numerical experiments demonstrate that both the mid-point rule and twostep BDFmethod are of order p 0when applied to impulsive differential equations. An improved linear multistep method is proposed. Convergence and stability conditions of the improved methods are given in the p...

متن کامل

Linear Multistep Methods for Volterra Integral and Integro-Differential Equations

In these appendices we present, successively, I conditions for the existence of a unique solution of (1.1) and (1.2); II three tables of coefficients of forward differentiation formulas, and of two common LM formulas for ODEs, viz., backward differentiation formulas and Adams-Moulton formulas; III two lemmas which are needed in: IV proofs of the main results of this paper, as far as they are no...

متن کامل

Linear Multistep Methods for Stable Differential Equations y = Ay + B {

The approximation of y=Ay + B't)y +c(t) by linear multistep methods is studied. It is supposed that the matrix A is real symmetric and negative semidefinite, that the multistep method has an interval of absolute stability [—s, 0], and that h2 II A II < s where h is the time step. A priori error bounds are derived which show that the exponential multiplication factor is of the formexp{r;i||B|||„...

متن کامل

Reversible linear differential equations

Let ∇ be a meromorphic connection on a vector bundle over a compact Riemann surface Γ. An automorphism σ : Γ → Γ is called a symmetry of ∇ if the pull-back bundle and the pull-back connection can be identified with ∇. We study the symmetries by means of what we call the Fano Group; and, under the hypothesis that ∇ has a unimodular reductive Galois group, we relate the differential Galois group,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Astronomical Journal

سال: 1999

ISSN: 0004-6256

DOI: 10.1086/301057